THE GEOLOGIC TIME REASONING ABOUT ROCKS AND FOSSILS (lessons 5 and 6)

Prof. Alain Préat Free University of Brussels

Préat 200

4

RELATIVE CHRONOLOGY

I. Principle of superposition

2. Principle of continuity

3. Principle of palaeontological identity

I. PRINCIPLE OF SUPERPOSITION

(17th century by Nicolaus Steno)

'STRATA BECOME YOUNGER UPWARDS'

This implies

- I. Strata were initially deposited flat (='principle of initial horizontality')
- 2. The entire section has not been overturned during deformation (tectonic or other)

'local' 2D (disconnected)

Principle of superposition (horizontality at the origin) ... the layers settle horizontally almost true at a large scale => a layer is more recent than those it covers

Application on the field.... not so easy

Application on the field.... not so easy

Principle of superposition (horizontality at the origin)

⇒ NEEDS CRITERIA OF POLARITY

(now in Belgium, acritarch biozones...)

SANDSTONES or CLASTICS

- graded beddding
- cross-bedding : a layer is younger than any layers it cuts across
-
- = 'hydrodynamism' or energy parameters

LIMESTONES

- geopetal cavities (= diagenesis with internal sediment...)
- organisms in life position (= paleoecology)
- burrows (= paleoichnology)
- vadose cementation (= early diagenesis)
- pisoids-calcretes (pedogenesis with inverse grading!)

= more complex than for sandstones

POLARITY CRITERIA ARE NUMEROUS Useful in a small outcrop or section Useful in thin section

TWO EXCEPTIONS I.ALLUVIAL TERRACES : the youngest are below the oldest ⇒important for the study of Quaternary series but inside the terrace the principle is applicable 2.VOLCANIC FLOWS : the oldest on the plateau, the youngest in the valleys

... and also for magmatic and metamorphic rocks (geometric relations) A. PREAT-ULB, L5&L6 (2011)

2. PRINCIPLE OF CONTINUITY

= base for geologic correlations

A sedimentary layer bounded by a 'roof' and a 'wall' and defined by a given facies has the same age in all its points => this implies that a layer is of the same age in all its points

=> At the origin of a layer, the same phenomena affected in the same time the area where the layer has been formed

DESPITE THIS IS MORE OR LESS THE CASE, IT IS HOWEVER NOT ALWAYS TRUE...

- a 'transgressive' layer is more and more recent during the transgression (and it is always the same facies (i.e. the same layer)
- idem during a 'regression'
- bear in mind : absolute vs relative sea level variation(s)

Contrasting rates of evolution and **shifting** environments. The **brachiopod** *Lingula* lives in the sandy nearshore facies and evolves extremely slowly => it is a poor biostratigraphic indicator. **Ammonoids** that swam in the open ocean, however, are excellent for biostratigraphy : they evolved rapidly and were not tied to any particular facies (as they are free-swimming).

With this principle the true stratigraphic difficulties start! BECAUSE IT IS DIFFICULT TO FOLLOW A SAME LAYER OVER GREAT DISTANCES (outcrop conditions, erosive hiatuses ...)

- mainly in the PALEOZOIC \Rightarrow USA-UK geologists are mainly SEDIMENTOLOGISTS (1) (not all is folded)
 - \Rightarrow European geologists are mainly STRATIGRAPHERS (2)
 - (at least at the beginning) the facies varying laterally
 - and the series being strongly folded (Caled.-Hercyn.-Alps)

(1) directly useful.... (2) is more complex for direct application

So, how has this principle been applied?

• at the origin (at the 'birth' of modern geology) ⇒the key factor was the LITHOLOGICAL CHARACTERISTICS (cf. geologic maps = rocks) ==> LITHOSTRATIGRAPHY and notion of FORMATION

Lithic continuity can be proved **ONLY** by lateral tracing of the rock bodies

For a long time the **FORMATIONS** were considered as having the same age for a particular lithology => chalks = Cretaceous, coal = Carboniferous... and today they are still associated with an age!

• Of course, this is wrong: example of the O.R.S. = Old Red Sandstones, they are very thick (km') and post-orogenic, i.e. Devonian (in Europe) and 'post-Caledonian' >< N.R.S. = NEW RED SANDSTONES (Permian and 'post-Hercynian'

Nb: O.R.S. = N-Europe (Ireland- Russian Platform) + E-Canada Also present below the Carboniferous (Kashmir, India where the folding occured later)

Idem for coal, for phosphorites, for Tertiary sands (of Paris basin)...
 ⇒ for the sands : superposition + continuity ==> geometry

===> 'lower', 'middle' and 'upper' sands

Idem for geological mapping

ALL THIS IS NOT ENOUGH TO CANCEL THE UNCERTAINTIES

IT NEEDS THEREFORE THE PALEONTOLOGICAL ARGUMENT => since the beginning of the 19th : BIOSTRATIGRAPHY

- 1800-1850 deduce if horizontal strata (in Belgium for example) are youngest than folded strata!...
- 1850-1900 : LITHOSTRATIGRAPHY
- > 1950 : Exploration of sea floors (after WWII...)
 => SEDIMENTOLOGY and PLATE TECTONICS (1968)
- 1990s : despite these advancements, numerous problems still exist (mainly due to the lateral facies variations)

⇒Two examples in Belgium (but they exist everywhere) I.'GRANDE BRECHE' V3a (= Viséan)

2. MUD MOUNDS or biohermal lenses F2ij (= Frasnian)

STAUFEN-EN-BRISGAU (GERMANY): GEOTHERMAL DRILLINGS (2008)

UPPER DEVONIAN STRATIGRAPHY, SOUTH BELGIUM

MUD MOUNDS BIOHERMS BIOHERMAL LENSES

69 reported 'red' mud mounds

Severe eustatic sea level rises

High vertical facies differenciation

High content in microaerophilitic iron bacteria (in *stromatactis* cavities)

Submicronic hematite hexagonal plates dispersed in the matrix

Fe₂O₃ : average 2% (max 5%)

Fe₂O₃ : average 1.8% (XRD)

// Mg, Si, Al i.e. // clay content

BEAUCHATEAU QUARRY near Senzeilles Philippeville Massif BELGIUM

Frasnian 'F2j'

griottes +'stromatactis' (1880)

as already mentioned by Delhaye, 1908 25

10cm

The red-pink-grey colour (succession) is 'ECOLOGICAL'

I : recurrence

- 7-8-9 : FWWB, cyanobacteria, algal (green algae)-coral-peloid wackestones-packstones
- 5-6 : progressive biotic enrichment (stromatoporoids, corals...)
- 4 : SWB, oligophotic environment (corals, crinoids, stromatactis)
- 3 : iron bacteria-sponge in a quiet aphotic/hypoxic environment, *stromatactis*
- 2: shale and carbonates with brachiopods, corals, crinoids _sponges
- I : shale with poor fauna, mainly sponges (substrate)

MICROFACIES SHALLOWING-UPWARD SEQUENCE

UPPER VISEAN, BECHAR BASIN, WESTERN ALGERIA Depth-related ecological zonation

A. PREAT-ULB, L5&L6 (2011)

UPPER VISEAN, BECHAR BASIN, WESTERN ALGERIA Vertical and lateral facies distribution

CARBONIFEROUS of ALGERIA

E/G transition BARRIER?

60

stromatopores (+ corals-algae)

env. 100 %!

'FONDRY DES CHIENS' Dinant Basin, Belgium

lenses 100'-1km X 10'm

Std Zonation

parallel Polygnothus and Ancyrodello zonation

A. PREAT-ULB, L5&L6 (2011)

Before the folding... (shortening of 33% in Burchette, 1981)

Structural map of Paris area (base of Lutetian, middle Eocene) Slight N-dip 1/3° i.e. 100m/15km from Meudon Anticline to Saint Denis Trough

Validated by later true facies interpenetration observation (Chalifert tunnel, 1974)

Position of the different phreatic water tables at Paris AA perched water table (base of Fontainebleau sands) BB general water table CC water table in the Ypresian sands

GYPSUM QUARRY AT ROMAINVILLE, Paris (1906)

City With a Subconscious As Paris grew from its ancient heart near Notre Dame, limestone quarries that had once been outside the city—and had provided stone for the cathedral and other structures—were built over. Trespassing *cataphiles*, like the student at right, venture into this buried past for the thrill of it; some draw their own elaborate maps of its intricacies.

Century by century, the city's underbelly took on a geography all its own. The extent of the limestone quarries, or *carrières*, beneath Paris was unknown until a deadly collapse in 1774 prompted Louis XVI to create a department to map them. The Inspection Général des Carrières (IGC) is still at work today, monitoring the maze of tunnels it created to find and reinforce the quarries. By 1860 the last limestone quarries had closed; gypsum was quarried, for plaster of paris, until 1873 (maps at top).

* Paris

2011

FRANCE

It can explain other geologic settings Exemple: Cretaceous in Belgium (Mons basin) ⇒ Iguanodons (crocodiles, turtles) Wealdian (Bernissart)

=> Underlying Carboniferous + geothermal energy

(ancient d	iges,	1	TPE LOCALITIE	MAIN FACIES	
ancient n	omenclature)				LATERAL FACIES
Période	Étage et sous-étage		Localités types	Faciès principaux	Faciès latéraux
25 Ma (Aquitanien		Calcaire de Beauce	Calcaire de l'Orléanais
OLIGOCÈNE	STAMPIEN s.l.	Stampien s.s.	Étampes (Essonne)	Calcaire d'Étampes Sables et grès de Fontainebleau Marnes à Huîtres	Meulière de Montmorency
37 Ma		Sannoisien	Sannois (Val-d'Oise)	Calcaire de Sannois Argile verte Glaises à Cyrènes	Calcaire de Brie
	-	Ludien	Ludes (Marne)	Marnes blanches de Pantin Marnes bleues d'Argenteuil Gypse et marnes intercalées	Calcaire de Champigny
	BARTONIEN	Marinésien	•	Marnes à <i>Pholadomya ludensis</i> Sables de Marines Sables de Cresnes	et de Château-Landon Calcaire de Saint-Ouen
		' Auversien	Auvers (Val-d'Oise)	Sables et grès de Beauchamp Sables d'Auvers	Calcaire de Nogent-l'Artaud Argile de Saint-Gobain
ÉOCÈNE	LUTÉTIEN	supérieur moyen inférieur	Lutèce (Paris)	Caillasses et biozone à <i>Discorinopsis kerfornei</i> Calcaire à Milioles, <i>Orbitolites</i> <i>complanatus et Num. variolarius</i> Calcaire grossier à <i>Num. laevigatus</i>	Calcaire de Provins et de Morancez
	YPRÉSIEN	Cuisien	Cuise.(Oise)	Grès de Belleu Sables de Pierrefonds Num. Sables de Cuise	Argile de Laon Sables à Unios et Térédines
		Sparnacien	Ypres (Belgique) n Épernay (Marne)	Argile à lignites du Soissonnais Argile plastique	Falun de Pourcy
55 Ma PALÉOCÈNE			Isle of Thanet (Kent)	Sables de Bracheux Tuffeau de La Fère	Calcaire et Sable de Rilly Conglomérat de Cernay Travertin de Sézanne
65 Ma	DANO-MONTIEN		Mons (Belgique)	Marnes de Meudon Calcaire « pisolitique »	
CRÉTACÉ sup.	CAMPANIEN		Champagne de Saintonge	Craie blanche à Bélemnitelles	

TYPE LOCALITIES

(ancient ages,

COMPOSITE STRATIGRAPHIC SECTION FOR A **LOCAL** SEDIMENTARY BASIN Diagrammatic summary of the latest Cretaceous, Paleocene, and Eocene strata of the San Juan Basin, New Mexico

Same stratigraphic interval of Paris Basin!

23.0

28.4

33.9

Chattian

Rupelian

Oligocene

F

Upper Cretaceous stratigraphic cross-section of the San Juan Basin, New Mexico Dean & Sears 1956

Seismic record and interpretative crosssection through the Hohne oil field, Gifhorn Basin West Germany.

Oil is produced from the **Dogger** beds immediately below the Cretaceous unconformity .

The 'layer-cake' filling of the basins is too simple and has no reality...

± 500 Km

±165MA

±175MA

Formations in the Dogger of the Paris Basin (1980) Rock Reservoir: porosity, permeability vs lateral variations 3D-geometry + HR Seismic and ?outcrops

layer-cake organization is wrong IN MOST OF THE CASES

C. PRINCIPLE OF PALEONTOLOGICAL IDENTITY

which consists to assume that each rock unit containing the same paleontological assemblage (= 'STRATIGRAPHIC FOSSILS') has the same age ⇒ using these fossils, rock units could be placed in their correct stratigraphic position in scattered outcrops

• biostratigraphy is therefore the establishement of fossil-based successions and their use in stratigraphical correlations

• the recognition and use of 'zone' fossils is fundamental to biostratigraphical correlation => they are several types of fossil zones (....). The base of each zone is defined by the appearance of certain new species, and its top by the by the appearance of certain new species that defines the base of the succeeding zone (...)

William Smith's (1769-1839) use of 'guide' fossils and faunal succession to match beds, hill and canal sections, combine to give the **COMPOSITE** SECTION (in Brookfield, 2004)

WE MUST THEREFORE DISTINGUISH BETWEEN

\Rightarrow STRATIGRAPHIC or ZONE FOSSILS

(± independent of the environment)

\Rightarrow FACIES FOSSILS

(dependent of the environment 'O.R.S-N.R.S'

STRATIGRAPHICAL (MICRO)FOSSILS = 'GUIDE or MARKER' or ZONE FOSSILS

What are the characteristics of good zone fossils? They should ideally highlight the smallest time intervals over the widest area

- wide paleogeographic range allowing long distance correlations
 => only PELAGIC or PLANKTONIC organisms fit this requisite, the others (benthonic) are associated with too local environments
- limited vertical time range of species
- \Rightarrow rapidly evolving lineages
- relatively common, capable of being preserved
- easily to identify

STRATIGRAPHICAL (MICRO)FOSSILS = 'GUIDE, MARKER' or ZONE FOSSILS

PELAGIC or PLANKTONIC are the best \Rightarrow floating, swimming (or flying) forms are less likely to be controlled by specific bottom or surface conditions, and are more likely to be carried by waves, currents, or winds into graves in a variety of different environments.

However, their distribution may be controlled by environmental differences in water masses and by where they get their food.

MAIN BIOSTRATIGRAPHICALLY USEFUL INVERTEBRATE FOSSIL GROUPS

MACROFAUNA

PALEOZOIC

=> Trilobites (Cambrian...), Graptolites (Ord-Sil), Goniatites (Dev) ...

MESOZOIC

 \Rightarrow Ammonites (Cephalopods) : 10,000 fossil species >< 400 present day CENOZOIC

=> rare

Q? What could be today the best (object) stratigraphic fossil?? = CC!!!

Figure 7.3 (Beer) bottles and beer cans considered as stratigraphical palaeontology: (a) hand-made bottle for cork; (b) machine-made bottle for metal cap; (c) early tin can with soldered joints and unpreserved paper label; (d) can sealed by crimping with label A. PREAT-ULE Printed on metal; (e) with tear-off metal flap ((a) to (d) after Hunt, 1959) 62

INDEX FOSSIL?

- = FACIES FOSSILS ?
- very abundant on the desert surfaces of the American south-west
- presumably rare in deep-sea deposits
- = ECOLOGICAL FOSSILS?
- less common in wine-drinking regions
- virtually unknown in strictly Islamic countries
- = 'DIACHRONIC' FOSSILS ? (stratigraphical drawbacks of migration and diachronism)
- the beer can evolved in N-America in the 1920s and 1930s and did not reach Europe after WWII except as erratic specimens
- = EVOLUTIVE FOSSILS ?
- severe competition as index fossils from the plastic bottle, which is more easily preserved
- \Rightarrow humorous French classification of the topmost stratigraphical stage into:

Poubellien supérieur (à plastique)

Poubellien inférieur (sans plastique)

or in other words : Upper dustbinian/trashcanian (with plastic)

Lower dustbinian/trashcanian (without plastic)

= 'TECHNICAL' FOSSILS ?

• see 'D-shaped' piece

conclusion

STRATIGRAPHIC FOSSILS <?> FACIES FOSSILS

RELATIVE BIOSTRATIGRAPHIC IMPORTANCE OF MAIN INVERTEBRATE GROUPS

1 important for long distance correlation
 2 useful for regional correlations
 3 not useful

STRATIGRAPHIC MICROFOSSILS = 'GUIDE or MARKER' or ZONE FOSSILS

PALEOZOIC (some examples)

 \Rightarrow **FUSULINIDA** (Foraminifera, Carboniferous : evolved at the beginning of the Carboniferous, diversified rapidly and became extinct at the end of the Permian)

= <u>considerable</u> use in the stratigraphic division of the Carb-Pm platform carbonates of the Tethyan Realm, including West-Texas, Spitzbergen, U.K., Belgium, North Africa, Russian Platfom, India and the Far East

 \Rightarrow **CONODONTS** = phosphatic tooth-like microfossils ranging in age from Cambrian to Triassic. The function of the conodont elements as teeth or possibly lophophore supports, within an eel-like fish, has been established only recently 1990s

- = 1500 sp. ...worldwide Devonian
- useful for biozones and 'cyclostratigraphy'
- useful for diagenetic and burial studies

=> + ostracods, acritarchs, charophytes, chitinozoans, pollens, spores...

LATE PALEOZOIC LARGER FORAMINIFERS **FUSULINIDS**

- 1 mm

Sphaeroschwagerina carniolica Early Permian (Asselian) Carnic Alps, Austria

Yabeina syrtalis Middle Permia) Southern Tunisia

STRATIGRAPHIC MICROFOSSILS = 'GUIDE or MARKER' or ZONE FOSSILS

MESOZOIC (some examples)

 \Rightarrow **CALPIONELLIDS** : Late Jurassic- Early Cretaceous

• easy to use! despite uncertain taxonomic affinity = tintinnids?

• application: thrust nappes in Algeria, in the Alps...

RECENT TINTINNID (microzooplankton) ciliate protozoan

Late Jurassic-Cretaceous (Rename 1971)

=> **GLOBOTRUNCANIDS**: Late Cretaceous –Recent

= plurilocular foraminifers (125-128, 132)

STRATIGRAPHIC MICROFOSSILS = 'GUIDE or MARKER' or ZONE FOSSILS

CENOZOIC (some examples)

=> **GLOBOROTALIDS** : Paleocene to

Recent (foraminifers)

9 X 30

Globorotalia (d'après W.H. Blow 1969)

TYPICAL PLANKTONIC FORAMINIFERA

MICROFAUNAS ⇒ ORBITOLINIDS : 'middle' Cretaceous ⇒ ORBITOIDS : Upper Cretaceous – Miocene =>NUMMULITIDS : Paleogene (Brussels ...)

etc..

Nummulites gizehensis

NUMMULITID and ALVEOLINID LIMESTONES

Nummulites, Eocene, S Bavaria, Germany

Alveolina, Early tertiary,, Slovenia

Alveolina, id. equatorial section

Nummulites, Eocene, S Bavaria, Germany

– 1 mm Alveolina lepidula, Tremp, NE Spain

CHRONO- STRATIGRAPHY		BIOSTRATIGRAPHY		BROSTRAT.									
HARLAND ET AL (1982)		1 2											
		BLOW (1969)	MARTINE (1971)	AD. (19	AMS (70)								
	UNDIFF.	N9	NN5 pp							-			
MOCENE	EARLY	NB	NN4	Lo	wer Tf								
		N7	14044										
		N6	NN3		U		-			-	naikyardia spp.	ŀ	
		N5	NN2	Те		1				ile a		1	aric
		N4	NN1								kya	. 11	hini
OLIGOCENE	LATE	P22	NP25		L						на		gypsina spp
		-	NP24			2007		tus		-			a p c
		P21 P20		Т		6		lana	Ņ	nsis	dds dds		spp illin ils tabe
		10.014	NP23		d			duio	. 0	cehe	peus ofra		nis
	EARLY	P19	NP22				spp	pp.	s spi	s gii	ociy; etisi imar		
		P18		1	rc -		coskinolina spp. s spp.	Assilina spp. – Orbitolites complanatus Somalina spp.	 Linderina spp. Dictyoconoides cooki 	Nummulites gizehensis	Spiroclypeus spp. Pellatispira spp. Chapmanina spp.	unces incrassatus ummulites vascus Austrotrillina asmariensis Eulepidina spp.	Archaias operculiniformis Mioc
-	-	P17	NP21					ilina Prbit nali	tyot	nmu	liii	arie	litor
EOCENE	5	P16 P15	NP19		ъ	3	so, ids	Ass - C	13	Nur		scur	in in its second s
		P15	NP18 NP17	T		la la	es.	ili	11	1		vas vas se a	erc
	MIDOLE	P13				Lockhartia praehaimei — Kathina spp. — Lockhartia haimei — Miscellanea miscella	p.				Nummittee incressing	tes	b
		P12	NP16		3		aria					roti	aias
		P11	NP15				Cosk Sakesaria spp. Opertorbitolites spp. Saudia spp.	111				nunces incrassatus - Nummulites vascus Austrotrillina asma Eulepidi	LCP.
		P10	NP14									N	4
	EARLY	P9	NP 13		2	har this cki	111		1.			5	
		P8 P7	NP12	Ta		Mi Ka		111				<	
		P6	NP10			31							
PALAEOCENE	щ	P5	NP9				11						
	LATE	P4 P3	NP4		1								
	2	P2	NP3	1-									
	EARLY	P1	NP2 NP1										

OPERCULINID and LEPIDOCYCLINID LIMESTONES

Operculina, Miocene, S Turkey

Miogypsina, Oligocene, S Turkey

Borelis melo, Alveolinacea, Miocene, S Turkey

Generalized patterns of the distribution of common foraminifera in different sedimentary environments

MICROFLORAS \Rightarrow DASYCLADACEAN ALGAE : Triassic – Recent \Rightarrow

MACROFLORAS ⇒ PTERIDOPHYTA : Carboniferous (Gondwana)

ACRITARCHS : ('acros' = uncertain, taxon) = Organic-walled microfossils of uncertain and probably disparate taxonomic affinity (some forms being at least arguably ancestral to dinoflagellates). Little is known of the biology, the basic morphology is of a hollow spherical or subspherical body or vesicle with or without 'spines'. Sizes : 20-50 µm.

- => phytoplankton?
- \Rightarrow 'recent invention' USA-Europe = 'palynomorphs'
- ⇒ Late PCm (acme), Cm-Sil-Dev-Pm (=diversification), Mesoz-Cenozoic (=decline)
- Stavelot/Brabant massifs (Belgium) : Lessines cores = folded monotonous series (siliceous)
- \Rightarrow UNPUBLISHED stratigraphic scales (oil companies...)
- => the rocks are dissolved (strong acids) to get the microfossils

Diameters 20-50 µm Cambrian Brabant massif Lessines, drilling

Acritarchs Other sp.

• • •

CORALS : local stratigraphic scale (but microstructures...) **ALGAE** : Belgian-French Devonian = facies-controlled

Udoteacean green algae 100'µm-mm Eifelian, Belgium

REVUE DE MICROPALÉONTOLOGIE, VOL. 35, Nº 1

Dasycladad green algae

 Eovelebitella, Viséan, Spain
 Diplopora, Late Triassic, Germany
 Neoteutloporella, Late Jurassic, Italy
 Mizzia, Late Permian, W Turkey
 Mizzia, id.

in Flugel 2004

JURASSIC- NORMANDY 'Vaches Noires Cliffs'

'Vaches Noires Cliffs' Callovian-Oxfordian

ş

Sea urchins

TODAY : GREAT IMPORTANCE OF PELAGIC <u>MICROFAUNAS</u> \Rightarrow ACCURATE AGE => DSDP (Deep Sea Drilling Project)

Example: superimposed thrust sheets in Algeria ('nappes') from a hand lens!

B U T ...

Nb: not all these pelagic (micro)biozonations still exist (particularly in the PALEOZOIC) \Rightarrow Use of faunas with more limited biotopes....

MACROFAUNAS Corals => Triassic Gastropods and Pelecypods => Mesozoic Brachiopods => Paleozoic etc....

What is a **PELAGIC FACIES**?

It is not a simple definition because there are a wide variety of biogenic and non-biogenic components in most 'pelagic sediments' and there can be **no specific detph connotation** to the world 'pelagic'

 \Rightarrow descriptive sense = open-marine deposits, whether in **shallow** epicontinental seas and outer shelf areas or in **deep** sea on oceanic crust in settings such as aseismic ridges, submerged plateaus, mid-ocean ridges and abyssal plains

==> the term 'pelagic' can also be applied to organisms that inhabit the open ocean and are exluded from marginal marine environments

===> in general : pelagic sedimentation implies a lack of significant influence of terrigenous sources ('hemipelagic' for sediments containing a substantial amount of fine-grained terrigenous material).

PELAGIC FACIES = slow 'grain-by-grain' settling of material biochemically produced in surface water and **HEMIPELAGIC FACIES** = redeposition of material, either downslope as in dilute-suspension turbidity current or by settling out of bottomcurrents or 'nepheloid' layers.

brown : land areas

light green : shelf areas (<200m water depth) dark green : continental slopes, rises and abyssal plains (mainly turbidite and hemipelagic sedimentation) white : mid-ocean and aseismic ridge flanks, seamount provinces and basins dominated by pelagic sedimentation

brown : land areas

light blue : continental margin sediments dominated by clastic terrigenous debris or carbonate shelf debris dark blue : sediments of glacial-marine origin

light green : siliceous biogenic pelagic deposits

lavander : pelagic red clays

pink : overlap of siliceous biogenic sediments and red clays

dark green : deep sea fans and abyssal plains dominated by clastic terrigenous turbidites

white : sea floor covered primarily by pelagic carbonate sediments

Diagrammatic representation of subsidence of oceanic crust and succession of sediment facies related to changes in water depth and productivity of surface water.

PALEOZOIC : THE CONODONTS

Conodonts : Pandler 1856!, Late Cambrian- Late Triassic, one dozen up to 1000s/kg of rock

- phosphatic tooth-like vertebrate remains
- nothing is known of the biology of the parent animal as it is extinct
- they are found as individual elements which can be conical, bar or blade shaped (ramiform) or platform type, < 1 mm long
- classification (into form genera) is based on details of morphology
- they are EXCLUSIVELY MARINE and <u>characteristically</u> DEEP MARINE, **but**...
- Late Cambrian, diversification in the Ordovician and again in the Late Devonian and Carboniferous, declined in the Permian and disappeared in the Triassic
- USEFUL in the stratigraphic subdivision of Paleozoic marine sediments in a range of palaeogeographic provinces ('worldwide zonations-and/or range charts)

Fig 11.22 Conodont elements: (a) coniform, lateral view, (b) coniform, lateral view, (c) ramiform, lateral view, (d) ramiform, lateral view, (e). straight blade, upper view, (f) arched blade, lateral view, (g) ramiform, posterior view, (h) platform, upper view, (i) platform, upper view, (j) platform, upper view (×20-35). A. PREAT-ULB, L5&L6 (2011)

Middle-Late Devonian Ancyrodella sp.

0.7 mm

I.4 mm

Morphology of conodont elements from Haq & Boersma 1978. (A)Cone type, (B) blade type, (C) bar type (D) platform type (*Gnathodus*) (E) platform type (*Polygnathus*)

(a) Clydagnathus (L. Carboniferous, Edinburg)

L4 cm or <cf RECENT Hagfishes-Myxinoidea and Lampreys

=

AGNATHA no jaws

PALEOECOLOGICAL DISTRIBUTION OF CONODONTS IN RELATION TO A REEF PROFILE IN THE LATE DEVONIAN (WORLDWIDE) – FROM BRASIER 1980

CAI

COLOR ALTERATION INDEX 1 to 5

CAI

COLOR ALTERATION INDEX 5 To 8

The geological T range for each CAI covers durations of 1,000 yr to 500 myr

CAI > 6 in rocks affected by a relatively high T, short term contact metamorphic event

P platform element R ramiform element S simple-cone element J juvenile A adult

L5&L6 (2011)

PREAT-ULB,

Ŕ

Siljan Impact Sweden The largest in Europe Diameter : 75 km Age? 377 Ma F/F 2008: 374.5 Ma

Orbital Forcing Timescales and Cyclostratigraphy

edited by M. R. House and A. S. Gale

> ESTIMATION OF THE DURATION (OF A STAGE, OR....) INDEPENDANTLY FROM RADIOMETRIC DATES

Geological Society Special Publication No. 85

Published by The Geological Society 1995 EAT–ULB, L5&L6 (2011)

WHY?

... because the duration of the Devonian (for example) based on radiometric data show considerable divergence

Author	Devonian duration (Ma)	Givetian duration (Ma)	Givetian as a percentage of Devonian duration
Harland et al. 1982	(40)	6	12.5
Palmer 1983	48	6	12.5
Odin 1985	40	.5	12.5
McKerrow et al. 1985	58	11	18.96
Snelling 1985	50	(10)	(20)
Harland et al. 1989	46	3.4	7.39
Cowie & Bassett 1989	55		-
Menning 1989	46	-	-
Odin & Odin 1990	50	(5)	10.0
Fordham 1992	44	c. 8.7	19.8

EIFELIAN

Marbrière Nord Pic de Bissous Montagne Noire France

INVERTED SECTION

OBERVATION

FINE-SCALE MICRORHYTHMICITY

INTERPRETATION

Microrhythms are due to the precessional orbital forcing climatic signature

= BIMODAL COUPLETS WITH AVERAGE THICKNESSES of 5.6cm (p?) and 10.5cm (o?) (n = 107 beds)

348 couplets x 5,6 cm x 16 678 yr = 6,5 myr

Cycle		Present-day	Mid-Devonian
Precession	(1)	19.0 ka	16.8 ka
	(2)	23.0 ka	19.9 ka
Obliquity	(1)	41.0 ka	32.1 ka
	(2)	54.0 ka	39.5 ka
Eccentricity	(1)	123.0 ka	123.0 ka
	(2)	413.9 ka	413.9 ka

Table 2. Calculation of orbital frequencies (from Berger et al. 1989a, b)

BE CAREFUL : LASKAR....

124

Givetian conodont Zone	Estimated duration (Ma)
Lowermost asymmetricus Zone	0.25
Upper disparalis Subzone	0.35
Lower disparilis Subzone	0.65
hermanni Zone	0.36
Upper varcus Subzone	0.21
Middle varcus Subzone	0.92
Lower varcus Subzone	4.05
hemiansatus Zone	0.43
	TOTAL : 7.2

CONCLUSION

« Whatever corrections may be needed to the estimates presented for ZONAL and STAGE durations of the Givetian (...or other), one thing is clear: the zonal estimates given by the orbital forcing are CONSIDERABLY nearer the truth than the naïve assumption currently made by many that biostratigraphical zones are of equal duration... » *In* House, 1995